
 International Journal Of Engineering Research

 & Management Technology

 Email: editor@ijermt.org www.ijermt.org

Copyright@ijermt.org Page 263

 July- 2014 Volume 1, Issue-4

 ISSN: 2348-4039

A Study on Different Types of Sorting Techniques

Priyanka Gera Ashish Gill

Department of Information and Technology Department of Information andTechnology

Dronacharya College of Engineering Dronacharya College of Engineering

Gurgaon, Haryana Gurgaon, Haryana

1. ABSTRACT

Our research paper aims at “Sorting Techniques”. Sorting is the process of placing elements from a

collection in some kind of order. A list of words could be sorted alphabetically or by length. We are going

to discuss all types of sorting techniques in our paper so that we can study most of the sorting techniques

through our paper. We had not only discussed types of sorting but have also explained each one of them

followed with a small piece of program which clearly indicates how each technique is going to work when

executed. Sorting really makes our work easy. Without sorting it would be really difficult for us to search

for the desired element in the list. But with the help of sorting we can do this in just a few minutes and that

too with efficiency. So sorting helps us in our day to day life also.

Keywords: External sorting, Internal sorting, in place, Sorting, Stable, Swapping

2. INTRODUCTION

The efficiency of data handling can often be substantially increased if the data is sorted according to some

criteria of order. For example it would be really difficult to find a name in the telephone directory if the

names are not alphabetically arranged. Same case goes with the dictionaries, book indexes, payrolls, bank

accounts, student lists and other alphabetically organized materials. It is very convenient for us if our data is

in sorted order. So retrieval of information is made easier when it is stored in some predefined order. We

have many sorting techniques available to us. We will discuss all types of sorting techniques and will also

compare them according to their features and runtime. So sorting is really a important and interesting area to

study in. Before getting into specific algorithms, we should think about the operations that can be used to

analyze a sorting process. First, it will be necessary to compare two values to see which is smaller (or

larger). In order to sort a collection, it will be necessary to have some systematic way to compare values to

see if they are out of order. The total number of comparisons will be the most common way to measure a

sort procedure. Second, when values are not in the correct position with respect to one another, it may be

necessary to exchange them. This exchange is a costly operation and the total number of exchanges will also

be important for evaluating the overall efficiency of the algorithm.

3. PROPERTIES OF SORTING TECHNIQUES

3.1 Stable

If the sorting algorithm preserves the relative order of any two equal elements, then the sorting order is

stable. For example when the cards are sorted by rank with a stable sort, the two 5s must remain in the same

order in the sorted output that they were originally in. When they are sorted with a non-stable sort, the 5s

may end up in the opposite order in the sorted output. When sorting some kinds of data, only part of the data

is examined when determining the sort order. For example, in the card sorting example to the right, the

cards are being sorted by their rank, and their suit is being ignored. This allows the possibility of multiple

International Journal Of Engineering Research & Management Technology ISSN: 2348-4039

 Email: editor@ijermt.org www.ijermt.org

Copyright@ijermt.org Page 264

 July- 2014 Volume 1, Issue-4

different correctly sorted versions of the original list. Stable sorting algorithms choose one of these,

according to the following rule: if two items compare as equal, like the two 5 cards, then their relative order

will be preserved, so that if one came before the other in the input, it will also come before the other in the

output.

3.2 In Place

If an algorithm does not require an extra memory space except for few memory units, then the algorithm is

said to be in place.

4. TYPES OF SORTING

4.1 Internal sorting

Internal sorting is applied when the entire collection of data to be sorted is small enough so that the entire

sorting can take place within the main memory. The time required to read or write is not considered to be

significant in evaluating the performance of internal sorting methods. Internal sorting takes place in the

main memory of a computer, where we can use the random access capability of the main memory to

advantage in various ways. By internal sorting we are arranging the numbers within the array only which is

in computer main memory.

4.2 External sorting

When large data have to be sorted they cannot be brought into the main memory at the same time. In such

situations we use external sorting where the entire file may reside on some secondary storage device. At the

same time based on the availability of the storage space in the main memory, some portion of the data from

the secondary storage device will be brought into the main memory that will be sorted and sent back to the

secondary storage device. Then the next portion will be brought into the main memory, sorted and then sent

to the secondary storage device till the time when whole of the file which is there on the secondary storage

device is sorted.

5. TYPES OF INTERNAL SORTING

5.1 Bubble Sort

Bubble sort, also known as exchange sort, is a simple sorting algorithm. It works by repeatedly stepping

through the list to be sorted. Comparing two items at a time and swapping them if they are in the wrong

order. The pass through the list is repeated until no swaps are needed, which means the list is sorted. The

algorithm gets its name from the way smaller elements bubble to the top of the list via swaps. In this method

we assume that the lower value items from the set of items are light and bubble on to the top. The bubble

sort is generally considered to be the most efficient sorting algorithm in common usage.

5.1.1 Code for bubble sort

Void bubble (int x[], int n)

{

int i, j, tmp;

for(i=0; i<n; i++)

{

 for(j=0; j<n-1; j++)

 {

 if(x[j] > x[j+1])

 {

 tmp=x[j];

 x[j] = x[j+1];

 x[j+1] = tmp;

International Journal Of Engineering Research & Management Technology ISSN: 2348-4039

 Email: editor@ijermt.org www.ijermt.org

Copyright@ijermt.org Page 265

 July- 2014 Volume 1, Issue-4

 }

 }

}

}

5.2 Selection Sort

The idea of selection sort is rather simple; we repeatedly find the next largest or smallest element in the

array and move it to its final position in the sorted array. For example if we need to sort the array in

increasing order we will begin by selecting the largest element and moving it to the highest index position.

We can do this by swapping the element at the highest index and the largest element. We then reduce the

effective size of the array by one element and repeat the process on the smaller sub array. The process stops

when the effective size of the array becomes 1. Thus, the selection sort works by selecting the smallest

unsorted item remaining in the list, and then swapping it with the item in the next position to be filled. This

is the simple method of sorting.

5.2.1 Code for selection sort

Void selection (int x[], int n)

{

int i, j, larg, pos, c=0;

for (i = n-1; i > 0; i--)

 {

 larg = x[0];

 pos=0;

 for(j = 1; j<=i; j++)

 c++;

 if (x[j] > larg)

 {

 larg = x[j];

 pos = j;

 }

 }

 x[pos] = x[i];

 x[i] = larg;

 }

 printf(“\n number of comparisons required = %d”,c);

}

5.3 Insertion Sort

The insertion sort works just like its name suggests it- it inserts each item in its proper place in the final list.

The simplest implementation of this requires two list structures – the source list and the list into which

sorted items are inserted. To save memory , most implementations use an in place sort that works by moving

the current item past the already sorted items and repeatedly swapping it with the preceding item until it is

in place. This method is widely used by card players.

6.3.1 Code for insertion sort

Void insertion (int x[] , int n)

{

int i , j, tmp;

for(i=0; i<n; i++)

International Journal Of Engineering Research & Management Technology ISSN: 2348-4039

 Email: editor@ijermt.org www.ijermt.org

Copyright@ijermt.org Page 266

 July- 2014 Volume 1, Issue-4

{

 tmp = x[i];

for(j= i-1; j>=0; j--)

 {

 if(temp < x[j])

 x[j+1] = x[j];

 else

 break;

 }

x[j+1] = temp;

 }

 }

5.4 Shell Sort

Shell sort is the modification of the insertion sort. Shell sort improves on the efficiency of insertion sort by

quickly values to their destination. In this instead of sorting the entire array at once the array is first divided

into smaller segments. Then these segments are sorted separately using the insertion sort.

5.4.1 Code for shell sort

#define MAX 15

Void main ()

{

int arr[MAX], i , j , k, n, incr;

printf(“ enter no of elements”);

scanf(“%d”, &n);

for (i=0; i<n; i++)

{

printf(“ enter element %d”, i+1);

scanf(“%d”, &arr[i]);

}

printf(“ unsorted list is”);

for(i=0; i<n; i++)

printf(“%d”, arr[i]);

printf(“ enter maximum increment (odd value)”);

scanf(“%d”, &incr);

/* shell sort algorithm applied */

while(incr >=1)

{

for(j=incr; j<n; j++)

{

k=arr[i];

for(i = j- incr; i>=0 && k<arr[i]; i = i-incr)

arr[i+incr]= arr[i];

arr[i +incr]=k;

}

printf(“ increment = %d”, incr);

for (i=0; i<n; i++)

printf(“ %d”, arr[i]);

incr= incr-2;

International Journal Of Engineering Research & Management Technology ISSN: 2348-4039

 Email: editor@ijermt.org www.ijermt.org

Copyright@ijermt.org Page 267

 July- 2014 Volume 1, Issue-4

}

printf{“sorted list is”)

for(i=0; i<n; i++)

printf(“%d”, arr[i]);

}

5.5 Merge Sort

Merge sort is a algorithm that uses the idea of divide and conquer approach.

5.5.1 Code for merge sort through recursion

define MAX 20

int array [MAX];

Void merge (int low, int mid, int high)

{

int temp[MAX};

int i= low;

int j= mid+1;

int k= low;

While ((i<= mid) && (j <= high))

{

 if (array[i]<=array[j])

 temp [k++]= array[i++];

 else

 temp [k++]= array[j++];

}

While (i<=mid)

 temp[k++]= array[i++];

while (j<= high)

 temp[k++]= array[j++];

while (j<=high)

 temp[k++]= array[j++];

for (i=low; i<= high; i++)

 Array[i]= temp[i];

}

Void merge_ sort(int low, int high)

{

int mid;

if (low != high)

{

 mid=(low+ high)/2;

 merge_ sort(low,mid);

 merge_ sort(mid+1, high);

 merge(low, mid, high);

}

}

International Journal Of Engineering Research & Management Technology ISSN: 2348-4039

 Email: editor@ijermt.org www.ijermt.org

Copyright@ijermt.org Page 268

 July- 2014 Volume 1, Issue-4

6. CONCLUSION
In our day to day life we come across many such instances where we literally need sorting. Without sorting

it would be very difficult to search a particular thing in the list. At the same time it would be really time

consuming as it would take a lot of time if we are going to search a particular thing in our list one by one.

So sorting is the best option in that case in which we can arrange elements according to our wish. Sorting

makes our task really convenient, easy and efficient. Manually there are chances that we may commit a

mistake but if we are following the code of any type of sorting algorithm then there are the minimal chances

of any kind of mistake. So sorting holds a very important place in computer science.

7. REFERENCES

1. Search engines like Google, Wikipedia

2. ACM transactions on algorithms

3. Various books on Data Structures
5. The sorting techniques: a tutorial paper on card sorts, picture sorts and item sort

